Multivariate subresultants using Jouanolou’s resultant matrices

نویسنده

  • A. Szanto
چکیده

Earlier results expressing multivariate subresultants as ratios of two subdeterminants of the Macaulay matrix are extended to Jouanolou’s resultant matrices. These matrix constructions are generalizations of the classical Macaulay matrices and involve matrices of significantly smaller size. Equivalence of the various subresultant constructions is proved. The resulting subresultant method improves the efficiency of previous methods to compute the solution of over-determined polynomial systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the irreducibility of multivariate subresultants Sur l’irréductibilité des sous-résultants multivariés

Let P1, . . . , Pn be generic homogeneous polynomials in n variables of degrees d1, . . . , dn respectively. We prove that if ν is an integer satisfying Pn i=1 di − n + 1−min{di} < ν, then all multivariate subresultants associated to the family P1, . . . , Pn in degree ν are irreducible. We show that the lower bound is sharp. As a byproduct, we get a formula for computing the residual resultant...

متن کامل

ar X iv : m at h / 05 01 28 1 v 1 [ m at h . A G ] 1 9 Ja n 20 05 Multivariate Subresultants in Roots

We give a rational expression for the subresultants of n+ 1 generic polynomials f1, . . . , fn+1 in n variables as a function of the coordinates of the common roots of f1, . . . , fn and their evaluation in fn+1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of...

متن کامل

Subresultants Under Composition

It is a well known fact that the resultants are invariant under translation. We extend this fact to arbitrary composition (where a translation is a particular composition with a linear monic polynomial), and to arbitrary subresultants (where the resultant is the 0-th subresultant).

متن کامل

Symmetric Subresultants and Applications

Schur’s transforms of a polynomial are used to count its roots in the unit disk. These are generalized them by introducing the sequence of symmetric sub-resultants of two polynomials. Although they do have a determinantal definition, we show that they satisfy a structure theorem which allows us to compute them with a type of Euclidean division. As a consequence, a fast algorithm based on a dich...

متن کامل

Resultants and Subresultants: Univariate vs. Multivariate Case

It is very well-known that this system has a non-trivial solution if and only if AD −BC equals to zero. One can generalize the previous situation in two different directions. The most classical one is the notion of determinant, which is the condition under which a system of n homogeneous equations in n unknowns    A11x1 + A12x2 + . . . + A1nxn = 0 A21x1 + A22x2 + . . . + A2nxn = 0 .. .. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007